A Consensus on Criteria for Cure of Acromegaly

Department of Medical and Surgical Sciences (A.G.), University of Brescia, I-25018 Montichiari, Italy; Assistance Publique-Hôpitaux de Paris et Université Paris-Sud 11 (P.C.), Department of Endocrinology and Reproductive Diseases, F-94275 Le Kremlin-Bicêtre, France; Neuroendocrine Unit (M.D.B.), Division of Endocrinology and Metabolism, University of Sao Paulo Medical School, 05311-970 Sao Paulo, Brazil; Neuroendocrine Unit (A.K.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; Department of Internal Medicine (S.L.), Division of Endocrinology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; Division of Endocrinology CHUS (F.F.C.), Department of Medicine, Santiago de Compostela University, 15782 Santiago de Compostela, Spain; Department of Endocrinology (P.T.), Christie Hospital, Manchester M20 4BX, United Kingdom; Division of Endocrinology (E.G.), University of Turin, 10129 Turin, Italy; Pituitary Research Unit (K.H.), Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; and Department of Medicine (S.M.), Cedars-Sinai Medical Center, Los Angeles, California 90048

Objective: The Acromegaly Consensus Group met in April 2009 to revisit the guidelines on criteria for cure as defined in 2000.

Participants: Participants included 74 neurosurgeons and endocrinologists with extensive experience of treating acromegaly.

Evidence/Consensus Process: Relevant assays, biochemical measures, clinical outcomes, and definition of disease control were discussed, based on the available published evidence, and the strength of consensus statements was rated.

Conclusions: Criteria to define active acromegaly and disease control were agreed, and several significant changes were made to the 2000 guidelines. Appropriate methods of measuring and achieving disease control were summarized. (J Clin Endocrinol Metab 95: 3141–3148, 2010)

Guidelines published in 2009 summarized the latest consensus on the management of acromegaly (1). Several other consensus documents have been published on various aspects of acromegaly management since 2000 (2–6), and in 2000, the criteria for cure of acromegaly were defined (2). In April 2009, the Acromegaly Consensus Group that had produced these previous documents met to reevaluate and update the guidelines on criteria for cure. The meeting was sponsored by the Pituitary Society and the European Neuroendocrine Association and included endocrinologists and neurosurgeons skilled in the management of acromegaly.

Recommendations were graded, based on the GRADE system (7, 8), depending on the quality of evidence as very low quality (VLQ; expert opinion with one or a small number of small uncontrolled studies in support), low quality (LQ; large series of small uncontrolled studies), moderate quality (MQ; one or a small number of large uncontrolled studies or metaanalyses), or high quality (HQ; controlled studies or large series of large uncontrolled studies with sufficiently long follow-up). Recommendations were classified as discretionary recommendations (DR) if based on VLQ or LQ evidence and as strong recommendations (SR) if based in MQ and HQ evidence.

Assays

The most important assays used for the diagnosis, management, and monitoring of acromegaly are GH and IGF-I measurements. The lack of reliable assays, assay standard-
GH and IGF-I Regulation

The measurement of GH and age-matched IGF-I concentrations are the most important biochemical variables for the diagnosis of acromegaly and for monitoring progression or treatment response (HQ) (11, 14, 21, 26).

The measurement of total IGF-I levels reflects GH secretory status in acromegaly (at baseline for diagnosis, after neurosurgery or radiotherapy, or during medical treatment) (HQ) (26–28). The measurement of free IGF-I and/or IGF-binding proteins does not provide additional clinical information (MQ) (19, 22, 26, 27).

In the investigation of suspected acromegaly, an elevated IGF-I level and a failure to suppress GH during an oral glucose tolerance test (OGTT) confirm the diagnosis (HQ) (29). In some cases, when the IGF-I and GH levels are clearly elevated, an OGTT may not be required (LQ) (21). During follow-up after neurosurgery or radiotherapy, controlled GH status can be defined as GH suppression during an OGTT (for patients not receiving medical therapy) and a normal IGF-I level (after 3–6 months for those that have undergone neurosurgery) (HQ) (29). When there is discrepancy between GH and IGF-I values, multiple GH sampling (three to five times over 2 h) is helpful (MQ) (14) (see below). For patients receiving medical treatment with a somatostatin receptor ligand (SRL) or dopamine agonist, IGF-I and random GH measurements are sufficient for assessment. In fact, an OGTT may not be helpful for monitoring response in patients receiving any medical treatment (MQ) (11, 29). In patients receiving a GH receptor antagonist, only IGF-I should be measured (HQ) (30).

Oral but not transdermal estrogens reduce IGF-I concentrations; results of IGF-I measurements in women receiving oral estrogens should therefore be interpreted with caution (MQ) (31–34).

Discrepant Biochemical Results

GH and IGF-I levels are closely correlated in patients with acromegaly and healthy individuals (HQ) (35, 36); however, discordance between GH and IGF-I levels has been noted in up to 30% of patients with acromegaly after treatment (MQ) (29, 32). Most discordance involves the measurement of normal GH levels and elevated IGF-I levels, but some cases exhibit elevated GH levels and normal IGF-I levels (MQ) (32, 34).

Apparent discrepant results may stem from inaccurate estimates of GH status, either from limited sampling (often a single or small number of GH measurements are obtained randomly or during dynamic testing, which may not accurately measure 24-h GH output) or from the lack
of assay standardization (MQ) (11). However, there are a number of other factors that can lead to discrepancies in GH/IGF-I levels, including hormone half-life, pulsatility, age, comorbidities, and genetic differences (LQ) (34, 37–42).

The combination of an elevated IGF-I level and a normal GH level is sometimes seen after radiation therapy because radiotherapy causes a flat GH secretory pattern (VLQ) (43). In contrast, a number of factors have been identified that can result in lower IGF-I levels relative to GH levels (either by reducing IGF-I levels or raising GH levels); these include nutritional or gastrointestinal disorders such as chronic inflammatory bowel disorder and anorexia nervosa (which can impair IGF-I production by the liver), hepatic or renal failure, oral estrogens, hypothyroidism, and poorly controlled type 1 diabetes (MQ) (11). In addition, patients with acromegaly in long-term remission may have discrete signs of mild GH excess (such as mild hypertension, relative glucose intolerance, and arthralgia) (LQ) (44, 45), and the chronicity of the acromegaly is an important factor when interpreting discordant results.

It should be noted that the timing of postoperative testing may affect apparent discrepancies. Because of the long IGF-I half-life and other factors regulating IGF-I, it can take several months after surgery for levels to be accurate (MQ) (46). If biochemical measurements 3–6 months after surgery show an elevated IGF-I level, further testing of GH with an OGTT, multiple GH sampling (three to five times over 2 h), or isolated GH measurement should be performed (SR) (14, 21, 35, 42, 43). If there is a significant discrepancy, further testing may be needed over time, and therapeutic decisions should be made according to the clinical context. Assessment of GH receptor polymorphisms may sometimes be helpful in this setting (DR) (47) (Fig.1).

Clinical Outcomes

Morbidity and mortality rates in uncontrolled acromegaly are increased due to the deleterious effect of raised GH and IGF-I, and sustained long-term treatment is needed to normalize these rates (HQ) (45, 48–51).

Comorbidities

The major comorbidities associated with acromegaly are cardiovascular disease, diabetes, hypertension, sleep apnea, arthritis, and metabolic bone disorders (osteoporosis). Effective biochemical control does not always result in effective control of comorbidities (MQ) (44, 52–58).

Optimal control of comorbidities should be achieved with the most effective treatments for both acromegaly and the specific comorbidities (SR) (45, 59–61). Cardiovascular disease, hypertension, diabetes, sleep apnea, and arthralgia are all improved, although only partial regression may occur, in patients with normalized GH levels (MQ) (59, 62). Cardiovascular risk factors should be actively identified and treated (SR) (52). Obstructive sleep apnea is a comorbidity that may occur in 25–60% of patients. Sleep quality and disturbances in patients with acromegaly require detailed assessment and appropriate referral for management (SR) (63). Patients with colonic polyps should be followed according to the international guidelines for colon cancer (SR) (64–67). When visual impairment is a symptom of acromegaly in the setting of chiasmal compression with macroadenomas, surgery is the primary treatment, but SRLs may decompress mass effects. Where surgery is not an option, SRLs could be used in specific cases under close ophthalmological monitoring (DR).

Tumor shrinkage with SRLs

Control of tumor mass is a major goal of acromegaly therapy, and surgery achieves this in many patients (HQ) (14, 68–72). The role of medical therapy in achieving tumor shrinkage is less well defined. In patients receiving SRL therapy, a detectable degree of shrinkage is seen in up to 80% of de novo patients in some treatment series (MQ) (73–82). The degree of tumor shrinkage after 3 months of SRL therapy may predict long-term (12 months) shrinkage (LQ) (81). Tumor shrinkage is not necessarily associated with biochemical remission (MQ) (83, 84).

The presurgical use of SRLs may improve surgical outcome, but this requires more data to confirm initial reports (SRL therapy has improved surgical outcome in some studies but not in others) (LQ) (85–90) and to define the
patients that are most likely to benefit from pretreatment. There is no evidence that presurgical treatment with SRLs reduces the efficacy of surgery (MQ) (85, 87, 88).

Evidence is stronger for improvements in response to SRL therapy after surgical debulking (MQ) (91–94).

Mortality
Comorbidities and delays in diagnosis are the main factors influencing the prognosis of acromegaly (HQ) (49–51, 95). Both GH and IGF-I levels correlate with mortality, and mortality is close to levels expected in the general population when GH and serum IGF-I are controlled (MQ) (50).

In patients with discordant GH and IGF-I levels, the mortality risk does not appear to be elevated, but data are still insufficient (VLQ) (51).

Definition of Disease Control
Most of the case series (32, 34, 96) published in the last decade have suggested that use of the Cortina criteria (2) for defining disease control could have two main drawbacks: first, they were not sufficiently flexible to be applied to different treatment modalities; and second, cutoff limits for GH did not reflect the now widespread availability of ultrasensitive GH assays.

Therefore, optimal disease control (i.e., posttreatment remission of acromegaly) is now defined as IGF-I level (determined by a reliable standardized assay) in the age-adjusted normal range and a GH level less than 1.0 μg/liter from a random GH measurement (using an ultrasensitive assay) (MQ) (97). However, assays do not consistently report these values as reflective of biochemical control. Normalization of IGF-I is the only reliable marker of disease control under pegvisomant (HQ) (30).

In patients with acromegaly undergoing surgical management of GH-secreting tumors, OGTT can be used to assess the outcome (SR) (29, 42). There is substantial evidence to suggest that nadir GH levels less than 0.4 μg/liter (with ultrasensitive assays) may define control in these circumstances (MQ) (11, 34, 96, 98). In the case of discrepant biochemical results, multiple GH sampling may be useful (MQ) (14, 35, 43) (Table 1 and Fig. 1).

At present, there is no longer justification for staging the outcome of treatment in acromegaly, except to define active disease and controlled disease (SR) (2) (Table 1).

TABLE 1. Acromegaly treatment outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Criteriaa</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active disease</td>
<td>Random GH >1 μg/liter and nadir GH after OGTT >0.4 μg/liter</td>
<td>Periodic MRI</td>
</tr>
<tr>
<td></td>
<td>Elevated IGF-I</td>
<td>Monitor and actively treat comorbidities</td>
</tr>
<tr>
<td></td>
<td>Clinically active</td>
<td>Actively treat or change treatment</td>
</tr>
<tr>
<td>Controlled disease</td>
<td>Random GH <1 μg/liter or nadir GH after OGTT <0.4 μg/liter</td>
<td>Periodic but less frequent MRIb</td>
</tr>
<tr>
<td></td>
<td>Age-sex normalized IGF-I</td>
<td>No change to current treatment; consider reducing SRL dose</td>
</tr>
</tbody>
</table>

MRI, Magnetic resonance imaging.

a Strong recommendations: assessment of GH during an OGTT and total IGF-I after surgery; random GH for patients on SRLs; if discrepant biochemical results, GH sampling three to five times over 2 h; always use reliable standardized assays and ultrasensitive assay for IGF-I and GH measurement.

b For example, every 2–3 yr.

In patients with discordant GH and IGF-I levels, the mortality risk does not appear to be elevated, but data are still insufficient (VLQ) (51).

Definition of Disease Control
Most of the case series (32, 34, 96) published in the last decade have suggested that use of the Cortina criteria (2) for defining disease control could have two main drawbacks: first, they were not sufficiently flexible to be applied to different treatment modalities; and second, cutoff limits for GH did not reflect the now widespread availability of ultrasensitive GH assays.

Therefore, optimal disease control (i.e., posttreatment remission of acromegaly) is now defined as IGF-I level (determined by a reliable standardized assay) in the age-adjusted normal range and a GH level less than 1.0 μg/liter from a random GH measurement (using an ultrasensitive assay) (MQ) (97). However, assays do not consistently report these values as reflective of biochemical control. Normalization of IGF-I is the only reliable marker of disease control under pegvisomant (HQ) (30).

In patients with acromegaly undergoing surgical management of GH-secreting tumors, OGTT can be used to

In the 10 yr since the criteria for cure of acromegaly were defined by the Acromegaly Consensus Group (2), significant progress has been made in the management of acromegaly. If managed appropriately by a multimodality team with specific experience of managing pituitary tumors, there is little justification for patients to have reduced life expectancy, frequent morbidity, or uncontrolled disease. Challenges related to criteria of cure include the need to standardize GH and IGF-I assays, how to interpret discrepant biochemical results, and how to refine treatment with SRLs to optimize tumor shrinkage.

Summary
In the 10 yr since the criteria for cure of acromegaly were defined by the Acromegaly Consensus Group (2), significant progress has been made in the management of acromegaly. If managed appropriately by a multimodality team with specific experience of managing pituitary tumors, there is little justification for patients to have reduced life expectancy, frequent morbidity, or uncontrolled disease. Challenges related to criteria of cure include the need to standardize GH and IGF-I assays, how to interpret discrepant biochemical results, and how to refine treatment with SRLs to optimize tumor shrinkage.

Acknowledgments
We thank all participants in the Seventh Acromegaly Consensus Group meeting: John Ayuk (United Kingdom), Ariel Barkan (United States), Albert Beckers (Belgium), Paolo Beck-Peccoz (Italy), Bengt Åke Bengtsson (Sweden), Anat Ben-Shlomo (United States), Jerome Bertherat (France), John Bevan (United Kingdom), Beverly Biller (United States), Jens Bollerslev (Norway), Vivien Bonert (United States), Thierry Brue (France), Michael Buchfelder (Germany), Philippe Caron (France), Davide Carvalho (Portugal), Franco Cavagnini (Italy), Jens Christiansen (Denmark), David Clemmons (United States), Annamaria Colao (Italy), Renato Cozzi (Italy), Ettore Degli Uberti (Italy), Laura De

In patients with acromegaly undergoing surgical management of GH-secreting tumors, OGTT can be used to
Marinis (Italy), Ernesto De Menis (Italy), Eva Marie Erfurth (Sweden), Rudolf Fahlbusch (Germany), Diego Ferone (Italy), Maria Fleseriu (United States), Pamela Freda (United States), Lawrence Frohman (United States), Monica Gadelha (Brazil), Rolf Gaillard (Switzerland), Yona Greenman (Israel), Feng Gu (China), Amir Hamrahian (United States), Ian Holdaway (New Zealand), Jens Jorgensen (Denmark), David Kleinberg (United States), Edward Laws (United States), Gaetano Lombardi (Italy), Marco Losa (Italy), Pietro Maffei (Italy), Josef Marek (Czech Republic), Gherardo Mazzotti (Italy), Moises Mercado (Mexico), Francesco Minuto (Italy), Mark Molitch (United States), Pietro Mortini (Italy), Robert Murray (United Kingdom), Stephan Petersenn (Germany), Ferdinand Roelfsema (The Netherlands), Roberto Salvatori (United States), Janet Schlechte (United States), Jochen Schopol (Germany), Omar Serri (Canada), Gunther Stalla (Germany), Brooke Swearingen (United States), Massimo Terzolo (Italy), George Tolis (Greece), Mary Lee Vance (United States), Aart Van der Lely (The Netherlands), John Wass (United Kingdom), Susan Webb (Spain), Margaret Wierman (United States), and Sema Yarman (Turkey). We acknowledge the editorial assistance provided by ESP Bioscience (supported by Ipsen) during the preparation of this manuscript.

Address all correspondence and requests for reprints to: Andrea Giustina, Department of Medical and Surgical Sciences, University of Brescia, Endocrine Service, Montichiari Hospital, Via Ciotti 154, 25018 Montichiari, Italy. E-mail: a.giustina@libero.it.

Disclosure Summary: A.K. and S.L. have nothing to declare. A.G. has consulted for Ipsen, Pfizer, and Italfarmaco and has received lecture fees from Novartis and Italfarmaco. P.C. is a consultant for and received lecture fees from Novartis, Ipsen, and Pfizer. The Service d’Endocrinologie et des Maladies de la Reproduction, Hôpital de Bièvre, Le Kremlin-Bicêtre, received educational and research grants from Novartis, Ipsen, and Pfizer. M.D.B. is a consultant for Novartis and Pfizer and a speaker for Ipsen, Novartis, and Pfizer. F.F.C. has served as a consultant for and received research grants from Pfizer, Colao, A., Lamberts, S., Sheppard, M., and Melmed S. 2008 Guidelines for the treatment of growth hormone excess and growth hormone deficiency in adults. J Endocrinol Invest 32:126–1328.

Address all correspondence and requests for reprints to: Andrea Giustina, Department of Medical and Surgical Sciences, University of Brescia, Endocrine Service, Montichiari Hospital, Via Ciotti 154, 25018 Montichiari, Italy. E-mail: a.giustina@libero.it.

Disclosure Summary: A.K. and S.L. have nothing to declare. A.G. has consulted for Ipsen, Pfizer, and Italfarmaco and has received lecture fees from Novartis and Italfarmaco. P.C. is a consultant for and received lecture fees from Novartis, Ipsen, and Pfizer. The Service d’Endocrinologie et des Maladies de la Reproduction, Hôpital de Bièvre, Le Kremlin-Bicêtre, received educational and research grants from Novartis, Ipsen, and Pfizer. M.D.B. is a consultant for Novartis and Pfizer and a speaker for Ipsen, Novartis, and Pfizer. F.F.C. has served as a consultant for and received lecture fees from Novartis and Italfarmaco. P.C. is a consultant for and received lecture fees from Novartis, Ipsen, and Pfizer.

This work was supported by Sponsored by the Pituitary Society and the European Neuroendocrine Association, Supported by an unrestricted grant from Ipsen.

References

25. Barkan AL, Dimaraki EV, Jessup SK, Symons KV, Ernolmenko M, Jaffe CA 2003 Ghrelin secretion in humans is sexually dimorphic, suppressed by somatostatin, and not affected by the ambient growth hormone levels. J Clin Endocrinol Metab 88:2180–2184
28. Carmichael JD, Bonert VS, Mirocha JM, Melmed S 2009 The utility of oral glucose tolerance testing for diagnosis and assessment of treatment outcomes in 166 patients with acromegaly. J Clin Endocrinol Metab 94:523–527
29. Trainer PJ, Drake WM, Katznelson L, Freda PU, Herman-Bonert V, Maiter D, Trainer PJ 2009 Monitoring of acromegaly: what should be performed when GH and IGF-I levels are discrepant? Clin Endocrinol (Oxf) 71:166–170
34. Meinhardt UJ, Ho KK 2006 Modulation of growth hormone action by sex steroids. Clin Endocrinol (Oxf) 65:413–422
80. Abe T, Lüdecke DK 2001 Effects of preoperative octreotide treat-

THE ENDOCRINE SOCIETY®

Members receive free electronic delivery of FDA drug safety alerts from the Health Care Notification Network (HCNN).

www.endo-society.org/FDA